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Abstract
We study the spectral fractional Laplacian (−∆)s in a bounded domain Ω ⊂ Rd. As in previous works we use the

Caffarelli-Silvestre extension to convert it into a Dirichlet-to-Neumann mapping in Rd+1
+ . A diagonalization scheme

is used to reduce the computational complexity and expose the inherent parallelizability of the method.

We refine the diagonalization scheme by proposing an analytic approach to compute the eigenpairs of the eigenvalue

problem in the extended dimensions, avoiding the numerical instability in approximating the eigenpairs with a finite

element method. We demonstrate that this new analytical approach is related to certain quadrature schemes used

to approximate the spectral fractional Laplacian. We further show that this novel algorithm maintains exponential

convergence. Numerical examples in two dimensions demonstrate the performance of the method.

Problem Statement

Let Ω ⊂ Rd be a bounded domain. Given s ∈ (0, 1) and a sufficiently smooth f , find u such that

(−∆)su = f in Ω .

Instead of solving the above problem, use the Caffarelli-Silvestre extension technique [3, 6] to

reformulate the problem. Set C = Ω × (0,∞) and find U such that

div (yα∇U) = 0 in C , U = 0 on ∂LC ,
∂U
∂να

= dsf on Ω × {0} , (1)

where α = 1 − 2s, ∂LC denotes the lateral boundary, ∂
∂να is the co-normal derivative, and

ds = 21−2sΓ(1−s)
Γ(s) is a normalizing constant.

Note: u(·) = U(·, 0).

Weak Formulation

First, truncate the cylinder to CY = Ω × (0,Y).
Introduce weighted L2 space:

‖w‖2
L2(yα,CY) :=

∫
CY
yαw(x)2dx dy < ∞ .

Define weighted Sobolev space:

H̊1
L(yα, CY) = {w ∈ L2(yα, CY) : ∇w ∈ L2(yα, CY) , w|∂LCY = 0} .

The problem is now: find UY ∈ H̊1
L(yα, CY) such that∫

CY
yα(∇UY · ∇v)dx dy = aCY(UY , v) = ds〈f, tr v〉 , ∀ v ∈ H̊1

L(yα, CY) .

Tensorial Finite Element Method

Observe: H̊1
L(yα, CY) = H1

0(Ω) ⊗H1
Y(yα, (0,Y)).

Previous work [5, 1] constructed a FE discretization by

Vh ⊗ SY ⊂ H1
0(Ω) ⊗H1

Y(yα, (0,Y))

Th is shape regular, conforming mesh of Ω and Vh is the space of piecewise linear elements over Th
SY is a FE discretization of the extended dimension

Solution representation:

UK
h,Y(x, y) =

K∑
k=1

Uk(x)vk(y) , Uk ∈ Vh , vk ∈ SY .

Optimal convergence rate required hp-FEM in the extended dimension [1].

Diagonalization Method

Substitute solution into weak form:

aCY(UK
h,Y , V Ψ) = ds

∫
Ω
f (x)V (x)Ψ(0) dx .

Simplify by: Find (ψ, µ) ∈ SY \ {0} × R such that∫ Y

0
yαψ′(y)w′(y) dy = µ

∫ Y

0
ψ(y)w(y) dy , ∀w ∈ SY .

Now the problem is: For k = 1, 2, . . . ,K, find Uk ∈ Vh such that∫
Ω

∇Uk(x) · ∇V (x) dx + µk

∫
Ω
Uk(x)V (x) dx = dsψk(0)〈f, V 〉 , ∀V ∈ Vh .

Issue: computing eigenvalue problem is unstable [7].

Instead, solve eigenvalue problem exactly.

ψ′′(y) + α

y
ψ′(y) + µψ(y) = 0 , y ∈ (0,Y) .

Solutions are

µ
(12)
k =

(
(k − 1

2)π
Y

)2

, ψ
(12)
k (0) =

√
2
Y

, µ
(s)
k =

(
ηk
Y

)2
, ψ

(s)
k (0) = 2s+1/2

µ
s/2
k YJ1−s(ηk)Γ(1 − s)

.

(2)

Quadrature and Error Analysis

Approximate solution may be written as

uK
h,Y = ds

K∑
k=1

|ψk(0)|2(µkI − ∆h)−1Phf .

Interpret this as a quadrature of the Balakrishnan formula [2]

(−∆h)−s = 2 sin(sπ)
π

∫ ∞

0
tα(t2I − ∆h)−1 dt .

Error is controlled via

‖u− uK
h,Y‖L2(Ω) ≤ ‖u− uh‖L2(Ω) + ‖uh − u∞

h,Y‖L2(Ω) + ‖u∞
h,Y − uK

h,Y‖L2(Ω)
. Discretization error +Quadrature error + Truncation error

Discretization error is controlled by h2s [4].

For s = 1
2, we have

‖u− uK
h,Y‖L2(Ω) . h2s + exp(−Y

√
λ1)√

λ1
+ Y

K
,

where λ1 is the principal eigenvalue of the Laplacian.

For s 6= 1
2, we have

‖u− uK
h,Y‖L2(Ω) . h2s + exp(−Y/

√
λ1) +

(
ηk
Y

)−2s+ε
,

for all ε > 0 such that 0 < 2s− ε and λ1 is the principal eigenvalue of the Laplacian.

Numerical Recipe
To achieve theoretical convergence for a given h, we require

Y = 2s| log(h)| and K = 2s| log(h)|
h

.

Computational Methodology

Implemented in deal.II (9.4.2-r3)

Parallelized with OpenMPI (4.1.5)

Single node Intel Xeon Gold 6246R

Fedora release 36

Numerical Results
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(a) ΩL = (0, 1)2 with linear combination of sine

functions as exact solution.
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(b) ΩC = {(x, y) : x2 + y2 ≤ 1} and exact solution is a

scaled Bessel function of the first kind.
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